Calorimetery Studies for Muon Collider using ILCroot

Vito Di Benedetto

INFN Lecce, Università del Salento, Fermilab

Muon Collider 2011 27 June - 01 July Telluride, Colorado, USA

Outline

- Detector baseline
- **MARS** event generator
- Background studies in the calorimeter
- Physics and background merging issues
- Conclusions

ILCroot: root Infrastructure for Large Collider

- Software architecture based on ROOT, VMC & Aliroot
- Uses ROOT as infrastructure
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)
 - Extremely large community of users/developers
- Include an interface to read MARS output to handle the MuonCollider background
- Single framework, from generation to reconstruction through simulation. Don't forget analysis!!!
- It is Publicly available at FNAL on ILCSIM since 2006

All the studies presented are performed by ILCRoot

Simulation steps in ILCroot: Calorimeter system

Detector baseline

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Detector baseline zoom

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Dual-readout Calorimeter for µCollider studies

- Lead glass + scintillating fibers
- ~1.4° tower aperture angle
- 180 cm depth
- $\sim 7.5 \lambda_{int} depth$
- $>100 X_0$ depth
- Fully projective geometry
- Azimuth coverage down to ~8.4° (Nozzle)
- Barrel: 16384 towers
- Endcaps: 7222 towers

ADRIANO Calorimeter (FNAL-INFN Collaboration) is used for the studies presented here

Detector baseline for these studies

- WLS's collect Cerenkov photons generated in lead glass (front and back readout)
- Generate and transport scintillating photons (front and back readout for fibers in the core of the tower; only back readout for the other fibers)
- Simulation include:
 - SiPM with ENF=1.016
 - Fiber non-uniformity response = 0.8% (scaled from CHORUS)
 - Threshold = 3 p.e. (SiPM dark current< 50 kHz)
 - ADC with 14 bits
 - Gaussian noise with $\sigma = 1$ p.e.

PRESENTLY IN A TEST-BEAM BY T1015 COLLABORATION

Simulating MARS generated event with ILCroot

- Simulated 1 MARS event
 - Origin of the particles: MDI surface
 - Background particles for μ^+ and μ^- within 25 m and beyond 25 m
 - Particle in a MARS event ~10⁸, almost all originated within 25 m

(See S. Striganov talk for more details)

- Particles from within 25 m have weight ~ 20
 - These particles are split using azimuthal symmetry
- Particles from beyond 25 m have weight << 1
 - Pick up randomly these particle, taking care the integral weight is the same
 - This have been done 10 times, then the average signal have been used
- Results presented use only background within 25m

Some simulation details

 Muon Collider particles background provided by MARS15 at the MDI surface (black hole surface)

• Particles (Physics and background) are tracked in the detector using Geant4

e

10

Event display only 4% of the full background

 Dual Readout calorimeter provide the measurement of the energy

Hits in the calorimeter

Timing and space distributions of one background event into the calorimeter

Longitudinal energy deposition in Dual-Readout calorimeter produced by 1 background event

Longitudinal segmentation of the calorimeter could be beneficial

12

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Time distribution of the MuonCollider background

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Time distribution of the MuonCollider background and particles from IP

Integration time gate for each section							
	Front Section		Rear Section				
	Scint	Cer	Scint	Cer			
conf A	100 ns	100 ns	100 ns	100 ns			
conf B	20 ns	15 ns	25 ns	25 ns			
conf C	15 ns	6 ns	22 ns	22 ns			

- In conf B 95% of the signal is integrated
- In conf C 90% of the signal is integrated

15

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Angular distribution of background for different integration times 1 entry = <1 cell>

The background reduction is higher going from 25 to 15 ns than going from 100 to 25 ns

Note: the background energy peak is between 20 – 35 ns

16

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Energy distribution of the background per tower in barrel section for different species using different time gate

Background energy distribution per tower in barrel Calorimeter Front Section; different integration times

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Background energy distribution per tower in barrel Calorimeter Rear Section; different integration times

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Look at the energy distribution of the background per tower for different species

Background energy distribution per tower Calorimeter Front Section Integration time gate conf C

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Background energy distribution per tower Calorimeter Rear Section Integration time gate conf C

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Energy distribution of the background per tower vs theta for different species

Background energy distribution per tower vs theta. Calorimeter Front Section; Integration time gate conf C

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Background energy distribution per tower vs theta. Calorimeter Rear Section; Integration time gate conf C

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Total energy distribution of the background per tower In barrel section [45° - 135°] and endcap sections [20° - 45°] And [8° - 20°]

Background energy distribution per tower in Front and Rear Section Integration time conf C

Background energy fluctuation					
Energy (GeV)	Front	Rear			
Barrel	5.33±0.54	0.63±0.43			
Mid ECap	4.33±0.79	1.20±0.95			
Forward ECap	8.31±2.94	11.3±6.8			

27

V. Di Benedetto Muon Collider 2011 27 June - 01 July

Physics and background at a Muon Collider: some comment

- Jets develop in 16 25 towers; mean energy 150 GeV
- Background in barrel Rear Section: mean energy 0.6 GeV RMS 0.4 GeV
 Jet energy fluctuation after background pedestal cut 1.5 – 2 GeV
- Background in endcap > 20° Rear Section mean energy 4 GeV RMS 0.8 GeV
 Jet energy fluctuation after background pedestal cut 3 – 4 GeV
- Background in endcap < 20° Rear Section mean energy 11 GeV RMS 7 GeV
 Jet energy fluctuation after background pedestal cut 28 – 35 GeV

Merging issues to be addressed

- •Merging is done from SDigits to Digits (inherited by AliRoot)
- ●For Alice this work fine. In high multiplicity event PbPb ions they have ~10⁴ particles per event
- ●In a MuonCollider MARS background event there are ~10⁸ particles per event
- ●To be able to simulate a full MuonCollider background event I split it in ~2x10³ subsections
- Using the classic merge technique is time expensive
- •Different approach can be used: apply filter at hit level, it is accurate and very efficient.

Conclusion

- Accurate study about MuonCollider background have been presented
- Mars to ILCroot interface is excellent
- The machinery for full simulations is in place and working smoothly
- Below 20° Physics is affected considerably
- More work is need to implement a more efficient merging of background and Physics

Present detector configuration is OK

More optimization work is needed to reduce the background to a confortable level

Backup slides

Required Computing Resources

Time and disk space needed to simulate 1 Muon Collider background event at hits level.

- Particles with weight 1;
 - 1 CPU <-> 2400 h
 - 200 Gb disk space
- Disk space and CPU time can be reduced applying filter at hit level.

V. Di Benedetto Muon Collider 2011 27 June - 01 July